Synthetic Studies of Sesquiterpenes with a cis-Fused Decalin System, 4. Synthesis of (+)-5\#H-Eudesma-3,11-diene, (-)-5\#H-Eudesmane-4\#,11-diol, and (+)-5\#H-Eudesmane-4\#,11-diol, and Structure Revision of a Natural Eudesmane-4,11-diol Isolated from Pluchea arguta
 Masayoshi Ando, Koji Arai, Kazuhira Kikuchi, and Koji Isogai
 J. Nat. Prod., 1994, 57 (9), 1189-1199• DOI:
 10.1021/np50111a001 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50111a001 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

SYNTHETIC STUDIES OF SESQUITERPENES WITH A CIS-FUSED DECALIN SYSTEM, 4^{1}. SYNTHESIS OF (+)-5 $3 \mathrm{H}-$ EUDESMA-3,11-DIENE, (-)-5 β H-EUDESMANE- $4 \beta, 11-$ DIOL, AND (+)-5 β H-EUDESMANE- $4 \alpha, 11-$ DIOL, AND
 STRUCTURE REVISION OF A NATURAL
 EUDESMANE-4,11-DIOL ISOLATED
 FROM PLUCHEA ARGUTA

Masayoshi Ando,* Koji Arai, Kazuhira Kikuchi, and Koji Isogai
Department of Applied Chemistry, Faculty of Engineering, Niigata University, Ikarashi, Niigata 950-21, Japan

Abstract

The syntheses of (+)-5 β H-eudesma-3,11-diene [1], (-)- 5β H-eudesmane4β,11-diol [2], and (+)-5 3 H-eudesmane-4 $\alpha, 11$-diol [15] were carried out by an unambiguous procedure starting from α-santonin. The diene 1 was identical with a natural product which was isolated previously as a termite defense substance. Although structure $\mathbf{2}$ was recently proposed for a new eudesmane-1,4-diol [A] isolated from Pluchea arguta, synthetic 2 and its $C-4$ epimer, 15, were not identical with this natural eudesmane-4,11-diol when their physical and spectroscopic parameters were compared. The structure of this natural eudesmane-4,11-diol has been revised from 2 to 3 ($7 \beta \mathrm{H}$-eudesmane- $4 \alpha, 11$-diol) as a result of the analysis of the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ nmr spectra of related natural and unnatural eudesmane derivatives.

The number of naturally occurring eudesmanes based on a cis-fused decalin system is quite limited. Occidentalol (2), chamaecynone (3), and related acetylenic norsesquiterpenes (4,5), which belong to this class of compounds, show interesting stereochemical behavior (6,7) and biological activity (8).

In 1982, Naya et al. isolated three cis-eudesmane derivatives, $5 \beta \mathrm{H}$-eudesma-3,11diene [1], 5β H-eudesma-4(14),11-diene, and amiteol from termite defense substances (9) (Figure 1). Because of the limited amount of compound isolated, the structure of $\mathbf{1}$ was elucidated based on ${ }^{1} \mathrm{H}$-nmr spectroscopy but its stereostructure was not established clearly (9).

Recently, a new eudesmane-4,11-diol [A], the so-called 4,5-epi-cryptomeridiol was

1

2

3

Occidentalol

Chamaecynone

$5 \beta \mathrm{H}$-Eudesma4(14), 11-diene

Amiteol

Figure 1. The naturally occurring eudesmanes with a cis-fused decalin system.

[^0]isolated from a Pakistani medicinal plant, Pluchea arguta Boiss. (Asteraceae) by Ahmad et al. (10), and the structure was proposed as 2 on the basis of spectroscopic studies. Herein we report the syntheses of $1[(+)-5 \beta \mathrm{H}$-eudesma-3,11-diene], $2[(-)-5 \beta \mathrm{H}-$ eudesmane- $4 \beta, 11$-diol $]$, and its $\mathrm{C}-4$ epimer $15[(+)-5 \beta H$-eudesmane- $4 \alpha, 11$-diol $]$ by an unambiguous procedure to confirm the structure of these natural $5 \beta \mathrm{H}$-eudesmanes. Since the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr spectra of synthetic 2 and its $\mathrm{C}-4$ epimer 15 were apparently different from those of natural eudesmane-4,11-diol reported by Ahmad et al. (10), we discuss the stereostructure of this natural product.

RESULTS AND DISCUSSION

The synthesis commenced with methyl ester 4 prepared as previously described from α-santonin (7). Reduction of 4 with LiAlH_{4} in $\mathrm{Et}_{2} \mathrm{O}$ gave the $3 \alpha, 12$-diol 5 and the $3 \beta, 12$-diol 6 in 75% and 25% yields, respectively (Scheme 1).

SCheme 1. Synthesis of 5β H-eudesma-3,11-diene $\{1]$.

Mesylation of 5 with methanesulfonyl chloride and pyridine, and successive treatment of the resulting mesylate 7 with a mixture of LiBr and $\mathrm{Li}_{2} \mathrm{CO}_{3}$ in DMF at 150°, gave (+)- $5 \beta \mathrm{H}$-eudesma-3,11-diene [1] as the sole product in 91% overall yield. By analogy, mesylation of $\mathbf{6}$ and successive treatment of the resulting mesylate $\mathbf{8}$ under the same reaction conditions mentioned above gave 1 in 76% overall yield. It is interesting that both the $3 \alpha, 11$-diol 5 and the $3 \beta, 11$-diol 6 gave the same regioisomer, the 3,11diene $\lceil\mathbf{1}]$, in excellent yields as the sole product. The ${ }^{1} \mathrm{H}$-nmr spectral data of $\mathbf{1}$ were identical with those of the natural product reported in the literature (9). The spectral data of natural and synthetic $\mathbf{1}$ are summarized in Table 1.

Our attention turned next to the syntheses of $5 \beta \mathrm{H}$-eudesmane- $4 \beta, 11$-diol $[2]$ and $5 \beta H$-eudesmane- $4 \alpha, 11$-diol [15]. Epoxidation of 1 with m-CPBA gave a mixture of four diepoxides, $9 \mathbf{9}, \mathbf{9 b}, \mathbf{1 0 a}$, and $\mathbf{1 0 b}$ (Scheme 2). Separation of this mixture by prep. hplc gave $9 \mathbf{a}, \mathbf{9 b}$, and a mixture of $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$ in $40 \%, 41 \%$, and 6% yields, respectively. The major products $9 \mathbf{a}$ and $9 \mathbf{b}$ are epimeric at $\mathrm{C}-11$ with the same stereochemistry at the 3,4 -epoxide ring as determined from an analysis of their ${ }^{1} \mathrm{H}-\mathrm{nm} r$ spectra. The stereochemistry of the 3,4 -epoxide ring was assigned as β from a consideration of the fact that the reagent attacks the 3,4-double bond of $\mathbf{1}$ from the less hindered convexed face (β side) (Figure 2).

By analogy, the minor diepoxides 10a and 10b were assigned as 3,4- α epoxides that again possess different stereochemistry at C-11 because the reagent attacks the 3,4-

Table 1. ${ }^{1} \mathrm{H}-\mathrm{Nmr}$ Spectral Data of Synthetic and Natural 1, and ${ }^{13} \mathrm{C}$-Nmr Spectral Data of Synthetic 1.

Proton(s)	Synthetic 1	Natural 1
	$\begin{gathered} { }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \\ 200 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \delta(\mathrm{ppm}) \\ 360 \mathrm{MHz} \end{gathered}$
Me-10	$1.00(3 \mathrm{H}, \mathrm{s})$	0.99 (3H, s)
Me-4	1.65 (3H, br s)	1.66 (3H, br s)
Me-11	1.73 (3H, s)	1.73 (3H, br s)
H-12	4.70 (2H, s)	4.69 (2H, br s)
H-3	5.43 (1H, br s)	5.43 (1H, br s)
Carbon	${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) 50.3 \mathrm{MHz} \delta(\mathrm{ppm})$ (multiplicity determined by DEPT)	
C-13	21.14 (q)	
C-14	21.88 (q)	
	22.44 (t)	
	26.75 (t)	
C-15	27.30 (q)	
	29.16 (t)	
	30.99 (t)	
C-10	31.43 (s)	
	36.00 (t)	
	40.14 (d)	
	44.35 (d)	
	108.13 (t)	
C-3	122.78 (d)	
C-11	135.18 (s)	
C-4	150.56 (s)	

Scheme 2. Preparation of 5β H-eudesmane-4 β,11-diol [2].
double bond of $\mathbf{1}$ from the more hindered concave face (α side). The stereochemical assignment of epoxides $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$ was also supported by analysis of the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectra of diols 2 and 15, as described later.

Reduction of 9a with LiAlH_{4} in $\mathrm{Er}_{2} \mathrm{O}$ gave four products, 2, 11, 12, and 13, in $41 \%, 14 \%, 3 \%$, and 9% yields, respectively. Reduction of $9 \mathbf{b}$ under the same conditions gave the same products (i.e., 2, 11-13) in $31 \%, 15 \%, 2 \%$, and 13% yields, respectively.

Compound 2 was determined as the desired $5 \beta \mathrm{H}$-eudesmane- $4 \beta, 11$-diol by interpretation of its ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra as well as from a consideration of the reaction pathway mentioned above. The C-4 stereochemistry of 2 also was supported by comparison of the δ value of $\mathrm{H}-7$ with that of 15 , to be mentioned later. The only moderate yield of 2 may be explained by the fact that the reagent attacks at $\mathrm{C}-3$ of 9 a or $\mathbf{9 b}$ from the more hindered concave face (α side), representing the unfavorable equatorial attack of hydride (Figure 3).

Figure 2. Direction of the approach of m CPBA.

Figure 3. Direction of the approach of hydride.

The stereochemistry of diols $\mathbf{1 1}$ and $\mathbf{1 2}$ was determined by the J values of $\mathrm{H}-3$ in their ${ }^{1} \mathrm{H}$-nmr spectra and the result of the following reaction. Thus, oxidation of 11 with $\mathrm{CrO}_{3} \cdot 2 \mathrm{Py}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in pyridine and successive reduction of the resulting ketone 14 with LiAlH_{4} gave the $3 \beta(a x)$-alcohol 11 and the $3 \alpha(e q)$-alcohol 12 in 12% and 60% yields, respectively (Scheme 3).

The formation of $\mathbf{1 1}$ in the reduction of diepoxides $\mathbf{9 a}$ and $\mathbf{9 b}$ is explained by the α-axial attack of hydride toward the $3,4-\beta$ epoxide ring at $C-4$. The 3α-alcohol 12 may be formed by reduction of the 11,13 -epoxide ring of $9 \mathbf{a}$ and $\mathbf{9 b}$ and successive rearrangement of the 3,4-epoxide ring of the resulting 13 to the ketone 14 followed by reduction with LiAlH_{4}. The formation of 13 in the reduction of $\mathbf{9 a}$ and $\mathbf{9 b}$ shows that the β-epoxide ring at the 3,4 -positions of the $5 \beta \mathrm{H}$-eudesmane derivative resists the reduction with LiAlH_{4}.

SCHEME 3. The chemical proof of stereochemistry of diols 11 and $\mathbf{1 2}$ by the preparation of $5 \beta \mathrm{H}$ -eudesmane- $4 \alpha, 11$-diol $\{15\}$ from the diepoxides $10 a$ and $10 b$.

Reduction of a diastereomeric mixture of $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$ with LiAlH_{4} gave $5 \beta \mathrm{H}-$ eudesmane- $4 \alpha, 11$-diol $[15\}$ as a single product in 80% yield. The high yield of 15 from $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$ may be reasonably explained by the fact that the reagent attacked C-3 of the 3,4 -epoxide ring from the less hindered convex β side by favorable axial attack. The stereochemistry of the C- 4 hydroxyl group of 15 was proved to be $\alpha(a x)$ by the fact that the $\mathrm{H}-7$ signal appeared at 2.10 ppm due to the deshielding effect of the syn-hydroxyl group at $\mathrm{C}-4$. In contrast, the $\mathrm{H}-7$ signal of 2 which possesses a β (eq)-OH at $\mathrm{C}-4$ appeared at a higher field than 1.7 ppm , although this overlapped with other signals.

The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra, as well as the physical constants of synthetic 2 and its C-4 epimer, 15, were different from those of the natural eudesmane-4,11-diol $[\mathbf{A}]$ (Table 2). Since the stereochemistry of our synthetic $\mathbf{2}$ is correct according to the synthetic scheme mentioned above, the structure of the natural product assigned as 4,5-epicryptomeridiol must be erroneous and should be revised. Below, we discuss the correct stereostructure of this natural eudesmane-4,11-diol [A].

By comparison of the ${ }^{1} \mathrm{H}$-nmr spectra of compounds 2 and \mathbf{A}, a major difference was observed in the δ values of $\mathrm{H}-15$ and $\mathrm{H}-14$. The $\mathrm{H}-15$ and $\mathrm{H}-14$ signals of 2 appear at 0.13 and 0.24 ppm lower field, respectively, than those of \mathbf{A}. Moreover, comparison of their ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra shows differences in the observed δ values of $\mathrm{C}-9, \mathrm{C}-14$, and $\mathrm{C}-15$.

Recently, Wijenberg et al. reported the syntheses of all stereoisomers of the eudesm11 -en- 4 -ols $16-23$, and suggested that ${ }^{13} \mathrm{C}-\mathrm{nmr}$ shielding data are helpful in the structure identification of similar compounds (11) (Figure 4, Table 3). Although cryptomeridiol $[\mathbf{2 6}]$ is a known natural eudesmane-4,11-diol (12), its C-4-epimer [27]

Table 2. Nmr Spectral Data of 2, 15, Cryptomeridiol [26], 4-epi-Cryptomeridiol [27], and Natural Eudesmane-4,11-diol [A] [4,5-epi-Cryptomeridiol as Reported in the Literature (10)].

Proton	2	15	26	27	A
	${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$				
	200 MHz	200 MHz	200 MHz	200 MHz	300 MHz
H-15	1.02	0.94	0.87	1.03	0.89
H-12	1.20	1.17	1.21	1.22	1.26
H-13	1.21	1.20	1.21	1.22	1.27
H-14	1.32	1.26	1.12	1.18	1.08
Carbon	${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ (ppm)				
	50.3 MHz	50.3 MHz	50.3 MHz	50.3 MHz	100.64 MHz
C-1	41.45	41.73	40.99	41.44	41.47
C-2	19.91	17.42	20.15	18.12	20.28
C-3	44.06	42.59	43.43	43.85	43.65
C-4	73.25	73.26	72.32	72.10	72.65
C-5	50.72	47.61	54.76	51.71	48.84
C-6	21.41	22.00	21.47	21.40	20.69
C-7	43.27	42.99	49.89	49.99	41.98
C-8	21.46	22.25	22.51	22.46	21.40
C-9	33.10	32.38	44.57	41.57	41.65
C-10	33.76	32.74	34.50	33.66	34.34
C-11	73.93	73.58	72.95	$73.03{ }^{\circ}$	74.70
C-12	26.96	25.93	27.04	26.84	29.54
C-13	27.28	27.69	27.32	27.48	29.84
C-14	29.98	31.34	22.62	30.32	21.95
C-15	27.96	29.45	18.67	18.69	18.66

$16 \mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{OH}$
$18 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{3}$

$17 \mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{OH}$
$19 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{3}$

$20 \mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{OH}$
$22 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{3}$

$21 \mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{OH}$
$23 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{3}$

FIGURE 4. trans- and cis-Eudesm-11-en-4-ols.

Table 3. Comparison of Selected ${ }^{13} \mathrm{C}$-Nmr Spectral Data (50.3 MHz) of trans- and cis-Eudesm-11-en-4-ols (11), Natural Eudesmane-4,11-diol [A] (10), and Synthetic $5 \beta \mathrm{H}$-Eudesmane-4 β, 11-diol [2].

Carbon	trans-eudesmanes				Natural	cis-Eudesmandiol				Synthetic 58H-Eudes-
	16	17	18	19	A	20	21	22	23	2
δ (ppm) in CDCl_{3}										
C.S	54.69	49.08	51.84	45.82	48.84	47.66	53.03	49.01	51.91	50.72
C-7	46.19	39.25	46.67	39.13	41.98	39.62	45.32	39.31	45.49	43.27
C-14...	22.58	22.21	30.23	29.78	21.95	31.23	31.15	30.30	31.20	29.98
C-15...	18.61	18.38	18.66	18.31	18.66	29.49	30.50	28.91	30.65	27.96

has not yet been reported in the literature. Since the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectral data of cryptomeridiol $\{26\}$ and its $\mathrm{C}-4$-epimer $\{27]$ are needed for the purposes of comparison with those of \mathbf{A}, we decided to synthesize these compounds from β-eudesmol (Scheme 4).

Epoxidation of β-eudesmol with m-chloroperbenzoic acid gave 13:1 mixture of the α-epoxide 24 and the β-epoxide 25. Reduction of this mixture with LiAlH_{4} gave criptomeridiol [26] and its C-4-epimer [27] in 87% and 7% yields, respectively. Ozonolysis of β-eudesmol and successive reaction of the resulting nor-ketone $[\mathbf{2 8}]$ with MeMgI gave 27 in 88% overall yield.

In their ${ }^{13} \mathrm{C}-\mathrm{nm}$ r spectra, the $\mathrm{C}-15$ signals of the trans-eudesmane derivatives 16 19,26 , and 27 appeared around $\delta 18.5$. In contrast, the C-15 signals of the ciseudesmane derivatives 20-23 appeared around $\delta 28-31$, as shown in Tables 2 and 3. The difference in the δ values of $\mathrm{C}-15$ in these cis- and trans-eudesmane derivatives is explained by the number of gauche interactions of $\mathrm{C}-15$. The $\mathrm{C}-15$ signal of $\mathbf{2}$ appears at 27.96 ppm , which is in good agreement with data for other cis-eudesmane derivatives. In turn, the $\mathbf{C - 1 5}$ signal of the natural eudesmane-4,11-diol $[\mathbf{A}]$ appears at 18.66 ppm ,

SCheme 4. Synthesis of criptomeridiol $\{26]$ and its $C-4$-epimer $\{27]$ from β-eudesmol.
which is in good agreement with those of the trans-eudesmane derivatives. These ${ }^{13} \mathrm{C}$ nmr spectral $\boldsymbol{\delta}$ values of $\mathbf{2}$ and \mathbf{A} strongly suggest that the natural eudesmane-4,11-diol $[\mathbf{A}]$ is not a cis- but rather a trans-eudesmane derivative. In eudesman-4-ols and eudesmane-4,11-diols with trans-ring fusion, the $\beta(a x) \mathrm{C}-4 \mathrm{Me}(\mathrm{C}-14)$ resonance of 16 , 17 , and 26 appears around 22.5 ppm . In contrast, the absorption of the $\alpha(e q) \mathrm{C}-14$ methyl group of $\mathbf{1 8}, \mathbf{1 9}$, and 27 appears around 30 ppm as indicated in Tables 2 and 3. The ${ }^{13} \mathrm{C}$-nmr spectrum of the natural eudesmane-4,11-diol [A] shows a C-14 absorption at $\delta 21.95$, which strongly suggests that the C- 4 methyl and hydroxyl groups of \mathbf{A} are situated in $\beta(a x)$ and $\alpha(e q)$ fashion, respectively, in a trans-eudesmane skeleton.

The C-4 stereochemistry of \mathbf{A} is also supported by the comparison of ${ }^{1} \mathrm{H}$-nmr spectral data of the trans-eudesmane-4-ols, 16-19, shown in Table 4 and of the trans-eudesmane-4,11-diols, 26 and 27, shown in Table 2, with those of \mathbf{A}. The H-15 chemical shift (δ 0.89) of \mathbf{A} is in good agreement with analogous data of the trans-eudesman- 4α-ols, 16 and 17, and cryptomeridiol [26]. The H-15 signals of the trans-eudesman- 4β-ols 18 and 19 and the trans-eudesmane- $4 \beta, 11$-diol [27] appeared at $0.16-0.2 \mathrm{ppm}$ lower field than those of the corresponding trans-eudesman- 4α-ols 16 and 17 , and the trans-eudesmane- $4 \alpha, 11$-diol 26, because of the deshielding effect of $4 \beta(a x)-\mathrm{OH}$.

Table 4. Selected ${ }^{1} \mathrm{H}-\mathrm{Nmr}$ Data (200 MHz) of trans-Eudesm-11-en-4-ols (11).

Compound	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$
	$\delta(\mathrm{ppm})$ in CDCl_{3}			
$\mathrm{H}-15 \ldots \ldots \ldots$	0.83	0.90	1.03	1.06
$\mathrm{H}-13 \ldots \ldots \ldots$	1.68	1.72	1.71	1.71
$\mathrm{H}-14 \ldots \ldots . .1 .06$	1.12	1.13		

In trans-eudesmane derivatives, the chemical shifts of C-5 and C-7 apparently depend on the configuration of the substituent at the $\mathrm{C}-7$ position. As shown in Table 3, compounds 17 and 19 which possess an $\alpha(a x)$-substituent at $\mathrm{C}-7$ show $\mathrm{C}-5{ }^{13} \mathrm{C}-\mathrm{nmr}$ absorptions at 5.61 and 6.02 ppm higher field and $\mathrm{C}-7$ absorptions at 6.94 and 7.54 ppm higher field, respectively, than analogous signals of the corresponding compounds $\mathbf{1 6}$ and 18 possessing a $\beta(e q)$-substituent at $\mathrm{C}-7$.

In the comparison of ${ }^{13} \mathrm{C}$-nmr spectra of eudesmane- $4 \alpha, 11$-diol (cryptomeridiol) [26], which possesses a β (eq)-substituent at $\mathrm{C}-7$ and the natural eudesmane-4,11-diol [A], the δ values of \mathbf{A} are in good agreement with those of the corresponding carbons of 26, except for the absorptions of $\mathrm{C}-5$ and $\mathrm{C}-7$, as shown in Table 2. The $\mathrm{C}-5$ and $\mathrm{C}-7{ }^{13} \mathrm{C}$ nmr signals of \mathbf{A} appear at 5.92 and 7.91 ppm higher field than the same signals of 26, respectively. These observations suggest that the substituent at $\mathrm{C}-7$ of \mathbf{A} occurs in an $\alpha(a x)$ configuration.

In conclusion, the structure of the natural eudesmane-4,11-diol [A], which was isolated from Pluchea arguta Boiss. by Ahmad et al. (10), is revised from structure 2 to structure 3 ($7 \beta \mathrm{H}$-eudesmane- $4 \alpha, 11$-diol).

EXPERIMENTAL

General experimental procedures.-All mps are uncorrected. ${ }^{1} \mathrm{H}$-Nmi spectra were recorded at 200 MHz in CDCl_{3} unless otherwise stated. ${ }^{13} \mathrm{C}$ - Nmr spectra were recorded at 50.3 MHz in $\mathrm{CDCl}_{3}{ }^{13} \mathrm{C}-\mathrm{Nmr}$ assignments were determined by DEPT and CH-COSY. Mass spectra (eims and hreims) were recorded on a JEOL-HX 110 instrument. Optical rotations were determined on a Horiba Sepa- 200 polarimeter in CHCl_{3}. Reactions were run under an N_{2} atmosphere; $\mathrm{Et}_{2} \mathrm{O}$ was dried over CaCl_{2}, distilled, and stored over Na wire; CHCl_{3} was dried over CaCl_{2} and distilled; and $\mathrm{DMF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and pyridine were distilled from CaH_{2}. Hplc was monitored with a refractive index detector. Kieselgel 60 (Merck 70-200 mesh) was employed for column chromatography. To describe hplc conditions, column, solvent, and flow rate ($\mathrm{ml} / \mathrm{min}$)
are designated in order. The column codes are as follows: $A, 250 \times 4 \mathrm{~mm}$ i.d. stainless steel column packed with $10 \mu \mathrm{~m} \mathrm{Si}$ gel; B, $250 \times 8 \mathrm{~mm}$ i.d. stainless steel column packed with $10 \mu \mathrm{~m} \mathrm{Si}$ gel; C, $300 \times 20 \mathrm{~mm}$ i.d. stainless steel column packed with $15-25 \mu \mathrm{~m}$ Si gel.

Methyl (11S)-3-oxo-4 $\alpha \mathrm{H}, 5 \beta \mathrm{H}-\mathrm{eudesman}-13$-oate [4].-A colorless oil: $[\alpha]^{25} \mathrm{D}+45.1^{\circ}(c=1.25$, CHCl_{3}); ir $\nu \max$ (neat) $1738,1716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 0.97(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{Me}-4), 1.01$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10$), $1.16(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Me}-11), 3.68$ (3H, s, -OMe); eims $m / z 266\left(100, \mathrm{M}^{+}\right), 179(44), 161$ (59), 123 (46), 107 (43), 88 (72); hreims $m / z 266.18815, \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3}$ requires 266.18816.
(11S)-5 β H-EUdesmane-3 $\alpha, 13$-diol [5] and (11S)-5 β H-EUDESMane-3 β,13-diol [6].-A solution of $4(200 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ was slowly added into a mixture of $\mathrm{LiAlH}_{4}(126 \mathrm{mg}, 3.33 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ under stirring and then refluxed gently for 4 h . The reaction was quenched by the addition of $\mathrm{Me}_{2} \mathrm{CO}(709 \mu \mathrm{l}, 13.3 \mathrm{mmol})$ at 0°. The mixture was poured into saturated aqueous $\mathrm{NaCl}(10 \mathrm{ml})$, filtered through Celite under reduced pressure, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$. The combined extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated to give a viscous oil (212 mg). On analysis of this crude product by hple [column A , EtOAc-hexane ($1: 1$) , $2.6 \mathrm{ml} / \mathrm{min}$] it was shown to be a $3: 1$ mixture of $5\left(R_{t} 6.4 \mathrm{~min}\right)$ and $6\left(R_{t}\right.$ 5 min). The mixture was separated by hple [column C, EtOAc-hexane ($4: 6$), $15 \mathrm{ml} / \mathrm{min}$].

The first peak ($R_{t}, 14 \mathrm{~min}$) gave $6\left(43 \mathrm{mg}, 25 \%\right.$) as a colorless oil: ir v max (neat) $3368 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\delta 0.92(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Me}-11), 0.95(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Me}-4), 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 3.48(1 \mathrm{H}, \mathrm{dd}$, $J=10.8$ and $6.5 \mathrm{~Hz}, \mathrm{H}-13), 3.63(1 \mathrm{H}, \mathrm{dd}, J=10.8$ and $5.0 \mathrm{~Hz}, \mathrm{H}-13), 3.79\left(1 \mathrm{H}\right.$, br s, $W_{\mathrm{h} / 2}=6.0 \mathrm{~Hz}, \mathrm{H}-$ 3); ${ }^{13} \mathrm{C}$ nmr $\delta 13.77$ ($\mathrm{q}, \mathrm{C}-12$), 16.74 ($\mathrm{q}, \mathrm{C}-14$), 24.21 (t$), 26.57$ (t$), 27.78(\mathrm{q}, \mathrm{C}-15), 28.73(\mathrm{t}), 30.10(\mathrm{t})$, 31.95 (d, C-7), 32.68 (s, C-10), 33.23 (d, C-5), 34.23 (t, C-2), 40.63 (d, C-11), 41.00 (d, C-4), 66.25 (t, C-13), 72.49 (d, C-3).

The second peak ($R_{i} 28 \mathrm{~min}$) gave $5\left(135 \mathrm{mg}, 75 \%\right.$) as colorless plates: $\mathrm{mp} 93^{\circ} ;[\alpha]^{25} \mathrm{D}+14.9^{\circ}(c=1.2$, CHCl_{3}); ir $v \max (\mathrm{KBr}) 3276 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 0.92(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{Me}-11), 0.95(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 0.98$ $(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{Me}-4), 3.12(1 \mathrm{H}$, ddd, $J=10.0,10.0$, and $4.4 \mathrm{~Hz}, \mathrm{H}-3), 3.47(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 5.2 $\mathrm{Hz}, \mathrm{H}-13$), $3.64\left(1 \mathrm{H}, \mathrm{dd}, J=8.3\right.$ and $4.0 \mathrm{~Hz}, \mathrm{H}-13$); ${ }^{13} \mathrm{C} \mathrm{nmr} \delta 13.41$ ($\mathrm{q}, \mathrm{C}-12$), 15.25 (q, C-14), 24.28 (t), 26.97 (t$), 27.76$ ($\mathrm{q}, \mathrm{C}-15$), 30.66 (t$), 30.85$ (t$), 32.21$ (d, C-7), 32.69 ($\mathrm{s}, \mathrm{C}-10$), 37.48 (d, C-5), 38.98 (t, C2), 40.61 (d, C-11), 46.99 (d, C-4), 66.26 (t, C-13), 76.45 (d, C-3); eims m/z 222 ($34, \mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}$), 207 (32), 163 (100), 109 (42), 81 (39); hreims $m / z 222.19837, \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$ requires 222.19834.
(115)-5 β H-Eudesmane-3 $\alpha, 13$-diol dimethanesulfonate [7].-To a stirred solution of 5 (1.0 g , 4.16 mmol) in pyridine (40 ml) was added methanesulfonyl chloride ($1.28 \mathrm{ml}, 16.6 \mathrm{mmol}$) at 0°. The mixture was allowed to stand at 0° for 30 min and then at 23° for 14 h . The reaction mixture was poured into saturated aqueous $\mathrm{NaCl}(150 \mathrm{ml})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 50 \mathrm{ml})$. The combined extracts were washed with $6 \mathrm{M} \mathrm{HCl}(5 \times 40 \mathrm{ml})$ and saturated aqueous $\mathrm{NaCl}(4 \times 30 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give $7(1.60 \mathrm{~g}, 97 \%)$ as a colorless oil: it $v \max \left(\mathrm{CHCl}_{3}\right) 1336,1174 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 0.96(3 \mathrm{H}$, s, Me$10), 0.99(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Me}-11), 1.00(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{Me}-4), 3.02\left(6 \mathrm{H}, \mathrm{s},-\mathrm{SO}_{3} \mathrm{Me}\right), 4.10(1 \mathrm{H}, \mathrm{dd}$, $J=9.5$ and $6.5 \mathrm{~Hz}, \mathrm{H}-13), 4.19(1 \mathrm{H}, \mathrm{dd}, J=9.5$ and $5.0 \mathrm{~Hz}, \mathrm{H}-13), 4.26(1 \mathrm{H}$, ddd $, J=11.0,11.0$, and 4.5 $\mathrm{Hz}, \mathrm{H}-3$).

Preparation of 5β H-eldesma-3,11-diene [1] From 7 .-A mixture of $7(1.57 \mathrm{~g}, 3.96 \mathrm{mmol}), \mathrm{LiBr}$ ($1.37 \mathrm{~g}, 15.8 \mathrm{mmol}$), and $\mathrm{Li}_{2} \mathrm{CO}_{3}(1.76 \mathrm{~g}, 23.8 \mathrm{mmol})$ in DMF (50 ml) was stirred at 150° (bath temperature) for 1 h , cooled, and filtered under reduced pressure. The filtrate was poured into saturated aqueous NaCl (150 $\mathrm{ml})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml}, 3 \times 50 \mathrm{ml})$. The combined extracts were washed with saturated aqueous $\mathrm{NaCl}(3 \times 100 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give a pale yellow oil (0.81 g), which was purified by column chromatography (column 3.4 cm i.d., Si gel; 41 g ; solvent, hexane) to give 1 ($765 \mathrm{mg}, 94 \%$) as a colorless oil: $[\alpha]^{2 s} \mathrm{D}+30.1^{\circ}\left(c=3.50, \mathrm{CHCl}_{3}\right)$; ir $v \max$ (neat) $3092,1646,888 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 1.00(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}-10), 1.65(3 \mathrm{H}, \mathrm{brs}, \mathrm{Me}-4), 1.73(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11), 4.70(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 5.43\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, W_{\mathrm{h} 2}=9.0 \mathrm{~Hz}\right.$, $\mathrm{H}-3$); ${ }^{13} \mathrm{C}$ nmr $\delta 21.14(\mathrm{q}, \mathrm{C}-13), 21.88(\mathrm{q}, \mathrm{C}-14), 22.44(\mathrm{t}), 26.75(\mathrm{t}), 27.30(\mathrm{q}, \mathrm{C}-15), 29.16(\mathrm{t}), 30.99(\mathrm{t})$, 31.43 (s, C-10), 36.00 (t), 40.14 (d), 44.35 (d), 108.13 (t, C-12), 122.78 (d, C-3), 135.18 (s, C-11), 150.56 (s, C-4); eims $m / z 204\left(48, \mathrm{M}^{+}\right.$), 161 (100), 122 (73), 109 (86), 93 (74), 91 (50); hreims $m / z 204.18814$, $\mathrm{C}_{15} \mathrm{H}_{24}$ requires 204.18777.
(11S)-5 β-Eudesmane-3 $\boldsymbol{\beta}, 13$-diol dimethanesulfonate $\{8\}$.-To a stirred solution of $\mathbf{6}$ (650 mg , 2.70 mmol) in pyridine (30 ml) was added methanesulfonyl chloride ($0.83 \mathrm{ml}, 10.8 \mathrm{mmol}$). The mixture was treated in the same way as described in the preparation of 7 to give $8(895 \mathrm{mg}, 84 \%)$ as a colorless oil: ir $v \max$ (neat) $1354,1178 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 0.99(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{Me}-11), 1.00(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{Me}-$ 4), $1.00(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 3.01\left(6 \mathrm{H}, \mathrm{s},-\mathrm{SO}_{2} \mathrm{Me}\right), 4.09(1 \mathrm{H}, \mathrm{dd}, J=9.7$ and $6.2 \mathrm{~Hz}, \mathrm{H}-13), 4.19(1 \mathrm{H}, \mathrm{dd}, J=9.7$ and $5.4 \mathrm{~Hz}, \mathrm{H}-13), 4.83\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, W_{\mathrm{h} / 2}=6.5 \mathrm{~Hz}, \mathrm{H}-3\right)$.

Preparation of 1 from 8.-The dimethanesulfonate $\mathbf{8}(150 \mathrm{mg}, 0.378 \mathrm{mmol})$ was treated in the same way as described in the preparation of $\mathbf{1}$ from 7 and gave $1(69.5 \mathrm{mg}, 90 \%)$ as a colorless oil.

EPOXIDATIONOF 1 TO FORM DIEPOXIDES $9 \mathrm{a}, 9 \mathrm{~b}, \mathbf{1 0 a}$ and 10 b .-A mixture of $1(200 \mathrm{mg}, 0.98 \mathrm{mmol}$) and $89 \% \mathrm{~m}$-CPBA ($532 \mathrm{mg}, 2.74 \mathrm{mmol}$) in CHCl_{3} was allowed to stand at 0° for 1 h and at 23° for 30 min . The mixture was then poured into a mixture of an aqueous solution of $\mathrm{KI}\left(\mathrm{KI} 286 \mathrm{mg} / \mathrm{H}_{2} \mathrm{O} 100 \mathrm{ml}\right.$) and saturated aqueous $\mathrm{NaCl}(150 \mathrm{ml})$, and extracted with $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{ml})$. The combined extracts were washed successively with 0.1 M aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \times 50 \mathrm{ml})$, saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{ml})$, and saturated aqueous $\mathrm{NaCl}(100 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give a colorless oil (249 mg), which was separated by hplc [column B, EtOAc-hexane (1:9), $6.0 \mathrm{ml} / \mathrm{min}$].

The first peak ($R_{t} 6.3 \mathrm{~min}$) gave a mixture of $\mathbf{1 0 a}$ and $\mathbf{1 0 b}(14 \mathrm{mg}, 6 \%)$ as colorless plates: ${ }^{1} \mathrm{H} \mathrm{nmr} \delta$ 0.92 (s$), 0.93(\mathrm{~s}), 1.28(\mathrm{~s}), 1.30(\mathrm{~s}), 2.52(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 2.70(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 2.87(\mathrm{~d}, J=4.5 \mathrm{~Hz})$.

The second peak ($R, 7.3 \mathrm{~min}$) gave $9 \mathrm{a}(92 \mathrm{mg}, 40 \%)$ as colorless plates mp $68^{\circ}:[\alpha]^{25} \mathrm{D}+0.56^{\circ}(c=0.88$, $\left.\mathrm{CHCl}_{3}\right) ;$ ir $\nu \max \left(\mathrm{CHCl}_{3}\right) 1232,898,840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 0.93(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 1.27(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-4), 1.33$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11), 2.56(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H}-13), 2.62(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H}-13), 2.95\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, W_{\mathrm{h} 2}=4.0\right.$ $\mathrm{Hz}, \mathrm{H}-3$).

The third peak ($R_{t} 9.0 \mathrm{~min}$) gave 9 b as a colorless oil ($95 \mathrm{mg}, 41 \%$): ir $\nu \max \left(\mathrm{CHCl}_{3}\right) 1272,902,830$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 0.93(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 1.27(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-4), 1.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11), 2.57(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}, \mathrm{H}-$ 13), $2.62(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}, \mathrm{H}-13), 2.94\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, W_{\mathrm{h} / 2}=4.0 \mathrm{~Hz}, \mathrm{H}-3\right)$.

Reduction of 9a with lithium aluminum hydride and preparation of 5β H-eUdesmane-4 β,11DIOL [2].-A solution of $9 \mathbf{a}(30 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml})$ was slowly added into a mixture of LiAlH_{4} ($48 \mathrm{mg}, 1.27 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{ml})$ and stirred at room temperature. $\mathrm{LiAlH}_{4}(48 \mathrm{mg})$ was added three times to the mixture after $7 \mathrm{~h}, 23 \mathrm{~h}$, and 35 h . Stirring was continued at room temperature for 11 h after the completion of addition of LiAlH_{4}, and the reaction was quenched by addition of $\mathrm{Me}_{2} \mathrm{CO}(1.08 \mathrm{ml}, 20.3$ mmol). The mixture was poured into saturated aqueous $\mathrm{NaCl}(150 \mathrm{ml})$, stirred for 30 min , filtered through Celite, and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 30 \mathrm{ml})$. The combined extracts were washed with saturated aqueous NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give a colorless oil (50 mg), which was separated by hplc [column $\mathrm{B}, \mathrm{EtOAc}$-hexane ($4: 6$), $6.0 \mathrm{ml} / \mathrm{min}\}$.

The first peak ($\mathrm{R}_{t} 4.2 \mathrm{~min}$) gave $13(2.8 \mathrm{mg}, 9 \%)$ as a colorless oil: ir $v \max \left(\mathrm{CHCl}_{3}\right) 3616,3480,1212$, $898 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 0.92$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10$), 1.196 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11$), 1.203 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11$), 1.36 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-$ 4), $2.96\left(1 \mathrm{H}, \mathrm{brs}, W_{h}=4.0 \mathrm{~Hz}, \mathrm{H}-3\right)$.

The second peak ($R_{t} 5.9 \mathrm{~min}$) gave $11\left(4.4 \mathrm{mg}, 14 \%\right.$) as colorless plates, $\mathrm{mp} 175^{\circ}$: ir $\nu \max (\mathrm{KBr}) 3368$ $\mathrm{cm}^{-1}{ }^{1} \mathrm{H} n \mathrm{mr} \delta 0.96(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{Me}-4), 0.99(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 1.18(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11), 3.81(1 \mathrm{H}, \mathrm{ddd}$, $J=2.2,2.2$, and $2.2 \mathrm{~Hz}, \mathrm{H}-3$); eims $m / z 222\left(2, \mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 149$ (100), 109 (90); hreims m / z 222.19820, $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$ requires 222.19834.

The third peak $\left(R_{t} 10.1 \mathrm{~min}\right)$ gave $\mathbf{1 2}(0.9 \mathrm{mg}, 3 \%)$ as a colorless oil: ir $\nu \max \left(\mathrm{CHCl}_{3}\right) 3616,3452 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr} \delta 0.95(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 0.99(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{Me}-4), 1.18(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11), 3.14(1 \mathrm{H}, \mathrm{ddd}, J=10.0$, 10.0 , and $4.3 \mathrm{~Hz}, \mathrm{H}-3$).

The fourth peak ($R, 14.3 \mathrm{~min}$) gave $2(12.7 \mathrm{mg}, 41 \%)$ as colorless plates, $\mathrm{mp} 114^{\circ}$; $[\alpha]^{20} \mathrm{D}-41.1^{\circ}$ $\left(c=0.23, \mathrm{CHCl}_{3}\right)$; ir $v \max (\mathrm{KBr}) 3380 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 1.02(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 1.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11), 1.21(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}-11$), 1.32 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-4$); ${ }^{13} \mathrm{C} \mathrm{nmr} \delta 19.91$ (t, C-2), 21.41 ($\mathrm{t}, \mathrm{C}-6$), 21.46 ($\mathrm{t}, \mathrm{C}-8$), 26.96, 27.28 (q, C$12, \mathrm{C}-13$), 27.96 ($\mathrm{q}, \mathrm{C}-15$), 29.98 ($\mathrm{q}, \mathrm{C}-14$), 33.10 ($\mathrm{t}, \mathrm{C}-9$), 33.76 ($\mathrm{c}, \mathrm{C}-10$), 41.45 (t, C-1), 43.27 (d, C-7), 44.06 (t, C-3), 50.72 (d, C-5), 73.25 (s, C-4), 73.93 ($\mathrm{s}, \mathrm{C}-11$); eims $m / z 222\left(11, \mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$), 204 (43), 164 (45), 149 (49), 109 (100), 59 (58); hreims 222.19909, $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$ requires 222.19834.

RedUction of 9b with Lithium aluminum hydride.-Reduction of $9 \mathbf{~ (~} 27.4 \mathrm{mg}, 0.12 \mathrm{mmol}$) with $\mathrm{LiAlH}_{4}(132 \mathrm{mg}, 4.64 \mathrm{mmol})$ by the analogous method used in the reduction of 9 a mentioned above gave an oily crude product (34.5 mg), which was separated by hplc [column B, EtOAc-hexane ($4: 6$), $6.0 \mathrm{ml} / \mathrm{min}$]. The first peak ($R_{t} 4.3 \mathrm{~min}$) gave $\mathbf{1 3}(3.6 \mathrm{mg}, 13 \%)$. The second peak ($R_{t} 6.0 \mathrm{~min}$) gave $\mathbf{1 1}(4.2 \mathrm{mg}, 15 \%)$. The third peak ($R, 11.0 \mathrm{~min}$) gave $12(0.6 \mathrm{mg}, 2 \%)$. The fourth peak ($R, 15 \mathrm{~min}$) gave $2(12.7 \mathrm{mg}, 31 \%)$.

Oxidation of 11 with chromium trioxide.-A quantity of $\mathrm{CrO}_{3}(50 \mathrm{mg}, 0.50 \mathrm{mmol})$ was added to a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ and pyridine ($81 \mu \mathrm{l}, 1.0 \mathrm{mmol}$) at 0° for 10 min . Then $\mathbf{1 1}(8.0 \mathrm{mg}, 0.033$ mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ and added over a 5 min period, and the mixture was stirred at 0° for 2.5 h and allowed to stand at this temperature for 18 h . The reaction mixture was worked up in the usual manner to give an oily material (10.8 mg), which was chromatographed over Si gel $[6 \mathrm{~mm}$ i.d. column, EtOAc-hexane (1:1)] to give $14(8 \mathrm{mg}, 100 \%)$ as a colorless oil: ir $v \max$ (neat) $3476,1712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\delta 1.00(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{Me}-4), 1.03(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 1.21(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11), 2.63(1 \mathrm{H}, \mathrm{dq}, J=6.5$ and 6.5 $\mathrm{Hz}, \mathrm{H}-4)$.

Reduction of 14 with lithium aluminum hydride.-A mixture of 14 ($8.0 \mathrm{mg}, 0.034 \mathrm{mmol}$) with $\mathrm{LiAlH}_{4}(6.4 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.5 \mathrm{ml})$ was refluxed for 2 h and poured into cold saturated aqueous $\mathrm{NaCl}(10 \mathrm{ml})$ and worked up in the usual manner to give a colorless oil (11 mg), which was separated by hplc [column B, EtOAc-hexane ($4: 6$), $6.0 \mathrm{ml} / \mathrm{min}$]. The first peak ($R, 6.3 \mathrm{~min}$) gave 11 ($1 \mathrm{mg}, 12 \%$). The second peak ($R_{t} 10.2 \mathrm{~min}$) gave $12(4.8 \mathrm{mg}, 60 \%)$.

Reduction of a mixture of $\mathbf{1 0 a}$ and 106 with itthium aluminum hydride leading to the FORMATION OF $S \boldsymbol{\beta H}$-EUDESMANE-4 $\alpha, 11$-diol [15].-A solution of a mixture of $\mathbf{1 0 a}$ and $\mathbf{1 0 b}(12 \mathrm{mg}, 0.05$ mmol) in $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{ml})$ was slowly added into a mixture of $\mathrm{LiAlH}_{4}(19.3 \mathrm{mg}, 0.51 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{O}$ (1.5 ml) at 0° and stirred for 16 h at room temperature. $\mathrm{LiAlH}_{4}(19.3 \mathrm{mg}, 0.51 \mathrm{mmol})$ was further added and stirring was continued for 22 h . The reaction was poured into cold saturated aqueous $\mathrm{NaCl}(50 \mathrm{ml})$ and filtered through Celite. The filtrate was worked up in the usual manner to give a colorless oil (12 mg), which was separated by hplc [column B, ErOAc-hexane ($4: 6$), $6.0 \mathrm{~m} / / \mathrm{min}$].

The peak ($R, 6.3 \mathrm{~min}$) gave $15(9.8 \mathrm{mg}, 80 \%)$ as a colorless oil: $[\alpha]^{20} \mathrm{D}+21.16^{\circ}\left(c=0.72, \mathrm{CHCl}_{3}\right)$; ir $\nu \max \left(\mathrm{CHCl}_{3}\right) 3616,3444 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 0.94(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 1.17(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11), 1.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11)$, $1.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-4), 2.00\left(1 \mathrm{H}\right.$, dddd $J=2.0,2.0,4.0$, and $\left.13.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{cq}}-6\right), 2.10(1 \mathrm{H}, \mathrm{dddd} J=4.0,4.0,12.0$, and $12.0 \mathrm{~Hz}, \mathrm{H}-7) ;{ }^{13} \mathrm{C} \mathrm{nmr} \delta 17.42(\mathrm{t}), 22.00(\mathrm{t}), 22.25(\mathrm{t}), 25.93(\mathrm{q}), 27.69(\mathrm{q}), 29.45(\mathrm{q}), 31.34(\mathrm{q}), 32.38$ (t), 32.74 (s), 41.73 (t$), 42.59$ (t), 42.99 (d), 47.61 (d), 73.26 (s), 73.58 (s).

4 α,14-EpoXyEUDESMAN-11-OL [24].—A solution of β-eudesmol ($500 \mathrm{mg}, 2.25 \mathrm{mmol}$) and $78 \% \mathrm{~m}$ CPBA ($597 \mathrm{mg}, 2.7 \mathrm{mmol}$) in CHCl_{3} (25 mmol) was allowed to stand at 0° for 18 h . The mixture was poured into a mixture of 0.1 M aqueous $\mathrm{KI}(22.5 \mathrm{ml})$ and saturated aqueous $\mathrm{NaCl}(20 \mathrm{ml})$, and was extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{ml})$. The combined extracts were washed successively with 0.1 M aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \times 30$ $\mathrm{ml})$, saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 30 \mathrm{ml})$, and saturated aqueous $\mathrm{NaCl}(3 \times 30 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give a $13: 1$ mixture of 24 and $4 \beta, 14$-epoxyeudesman- 11 -ol [25] ($537 \mathrm{mg}, 100 \%$). A part of this mixture was recrystallized from hexane to give pure 24 as colorless crystals: mp $61^{\circ} ;[\alpha]^{25} \mathrm{D}-22.4^{\circ}$ $(c=0.84)$; ir $\nu \max (\mathrm{KBr}) 3336,3044,1262,908,826 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 0.85(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 1.16(3 \mathrm{H}, \mathrm{s}$, Me-11), 1.17 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11$), $2.53(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{H}-14), 2.72(1 \mathrm{H}, \mathrm{dd}, J=4.5$ and $2.0 \mathrm{~Hz}, \mathrm{H}-14)$) ${ }^{13} \mathrm{C}$ $\mathrm{nmr}(50.3 \mathrm{MHz}) \boldsymbol{\delta} 17.03(\mathrm{q}, \mathrm{C}-15), 20.64(\mathrm{t}), 21.09(\mathrm{t}), 22.39(\mathrm{t}), 26.99(\mathrm{q}, \mathrm{C}-12), 27.45(\mathrm{q}, \mathrm{C}-13), 35.57$ (t, C-3), $35.82(\mathrm{~s}, \mathrm{C}-10), 41.06(\mathrm{t}), 41.54(\mathrm{t}), 47.32(\mathrm{~d}, \mathrm{C}-5), 49.04(\mathrm{~d}, \mathrm{C}-7), 50.94(\mathrm{t}, \mathrm{C}-14), 59.37(\mathrm{~s}, \mathrm{C}-$ 4), 72.69 (s, C-11). Anal., calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}, \mathrm{C} 75.58, \mathrm{H} 11.00$; found C $75.28, \mathrm{H} 10.87$.

Eudesmane-4a, 11-diol [26].-To a stirred solution of $\mathrm{LiAlH}_{4}(237 \mathrm{mg}, 6.24 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(16 \mathrm{ml})$ was added a $13: 1$ mixture of epoxides 24 and $25(213 \mathrm{mg}, 0.89 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{ml})$. The solution was stirred for 7 h at 0°, poured into saturated aqueous $\mathrm{NaCl}(150 \mathrm{ml})$, and extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{ml})$. The combined extracts were worked up as usual to give a white crystalline material, which was chromatographed over Si gel (16 g) with hexane-ErOAc ($1: 1$).

The first fraction gave 27 ($14 \mathrm{mg}, 7 \%$) as colorless needles. The second fraction gave spectroscopically pure 26 ($186 \mathrm{mg}, 87 \%$), which was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give colorless needles: $\mathrm{mp} 141^{\circ} ;[\alpha]^{25} \mathrm{D}$ $-25.3^{\circ}(c=1.11)$; ir $\nu \max (\mathrm{KBr}) 3396 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 0.87(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 1.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-4), 1.21(6 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}-11) ;{ }^{13} \mathrm{Cnmr} \delta 18.67(\mathrm{q}, \mathrm{C}-15), 20.15(\mathrm{t}), 21.47(\mathrm{t}), 22.51(\mathrm{t}), 22.62(\mathrm{q}, \mathrm{C}-14), 27.04(\mathrm{q}, \mathrm{C}-12), 27.32$ $(\mathrm{q}, \mathrm{C}-13), 34.50(\mathrm{~s}, \mathrm{C}-10), 40.99(\mathrm{t}), 43.43(\mathrm{t}), 44.57(\mathrm{t}), 49.89(\mathrm{~d}, \mathrm{C}-7), 54.76(\mathrm{~d}, \mathrm{C}-5), 72.32(\mathrm{~s}), 72.95$ (s). Anal., calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2}, \mathrm{C} 74.95, \mathrm{H} 11.74$; found $\mathrm{C} 74.54, \mathrm{H} 11.88$.

11-Hydroxy-14-noreudesman-4-one [28].-Ozone was bubbled into a solution of β-eudesmol ($334 \mathrm{mg}, 1.50 \mathrm{mmol}$) in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{ml})$ and $\mathrm{MeOH}(7.5 \mathrm{ml})$ at -70° until the solution became blue after 2.5 h . The reaction mixture was poured into a mixture of $\mathrm{KI}(623 \mathrm{mg}, 3.75 \mathrm{mmol}), \mathrm{MeOH}$ (14 $\mathrm{ml})$, and $\mathrm{AcOH}(10 \mathrm{ml})$ and stirred for 2 h . The resulting dark brown solution was poured into the stirred 0.1 M aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(24 \mathrm{ml}, 2.4 \mathrm{mmol})$ and extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{ml})$. The combined extracts were treated as usual to give spectroscopically pure $28(326 \mathrm{mg}, 97 \%)$ as colorless crystals, which were recrystallized from ether to give colorless cubes: $\mathrm{mp} 123^{\circ} ;[\alpha]^{2 s} \mathrm{D}+5.21^{\circ}(c=1.23$); ir \boldsymbol{v} max (KBr) $3516,1698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 0.77(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 1.19(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11), 1.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11){ }^{13} \mathrm{Cnmr} \delta 16.99$ ($\mathrm{q}, \mathrm{C}-14$), 21.52 (t), 21.97 (t$), 22.69$ (t), 26.77 ($\mathrm{q}, \mathrm{C}-12$), 27.38 ($\mathrm{q}, \mathrm{C}-13$), 39.36 ($\mathrm{s}, \mathrm{C}-10$), 40.42 (t$), 40.87$ (t), 41.27 (t , 48.51 (d, C-7), 57.48 (d, C-5), 72.74 ($\mathrm{c}, \mathrm{C}-11$), 212.79 ($\mathrm{s}, \mathrm{C}-4$). Anal., calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}, \mathrm{C}$ 74.95, H 10.78; found C 74.70, H 10.69.

Eudesmane-4 ${ }^{2}, 11$-diol [27].-Into an $\mathrm{Et}_{2} \mathrm{O}$ solution of MeMgI prepared from Mg powder (60 mg , $2.45 \mathrm{mmol})$ and $\mathrm{MeI}(139 \mu \mathrm{l}, 2.23 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ was added $28(50 \mathrm{mg}, 0.223 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10$ $\mathrm{ml})$. The solution was stirred for 2 h and poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{ml})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$. The combined extracts were worked up as usual to give spectroscopically pure 27 (59 mg , 91%), which was recrystallized from hexane to give colorless needles: $\mathrm{mp} 85^{\circ} ;[\alpha]^{2 S} \mathrm{D}+26.1^{\circ}(c=0.82)$; ir $\boldsymbol{v} \max (\mathrm{KBr}) 3348 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 1.03(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 1.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-4), 1.22(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ $\delta 18.12(\mathrm{t}), 18.69(\mathrm{q}, \mathrm{C}-15), 21.40(\mathrm{t}), 22.46(\mathrm{t}), 26.84(\mathrm{q}, \mathrm{C}-12), 27.48(\mathrm{q}, \mathrm{C}-13), 30.32(\mathrm{q}, \mathrm{C}-14), 33.66$ (s, C-10), 41.44 (t$), 41.57$ (t), 43.85 (t), 49.99 (d, C-7), 51.71 (d, C-5), 72.10 (s), 73.03 (s). Anal., calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2}, \mathrm{C} 74.95$, H 11.74 ; found C $74.56, \mathrm{H} 11.93$.

ACKNOWLEDGMENTS

We thank Dr. H. Hagiwara of the Institute of Chemical Reaction Science, Tohoku University, for the
measurement of hreims. We also thank Mr. T. Sato and Mrs. H. Ando of the Instrument Analysis Center for Chemistry, Tohoku University, for eims, hreims, and microanalyses.

LITERATURE CITED

1. M. Ando, T. Asao, T. Nakagawa, K. Nanaumi, and K. Takase, Bull. Chem. Sac. Jpn., 55, 1588 (1982).
2. T. Nakatsuka and Y. Hirose, Bull. Agric. Cbem. Sox. Jpn., 20, 215 (1956).
3. T. Nozoe, Y.S. Cheng, and T. Toda, Tetrabedron Lett., 3663 (1966).
4. T. Asao, S. Ibe, K. Takase, Y.S. Cheng, and T. Nozoe, Tetrabedron Lett., 3669 (1968).
5. K. Takase, S. Ibe, T. Asao, T. Nozoe, H. Shimanouchi, and Y. Sasada, Chem. Ind., 1638 (1968).
6. M. Ando, T. Asao, and K. Takase, Bull. Chem. Soc. Jpn., 53, 1039 (1980).
7. M. Ando, T. Asao, N. Hiratsuka, K. Takase, and T. Nozoe, Bull. Chem. Soc. Jpn., 53, 1425 (1980).
8. I. Saeki, M. Sumimoto, and K. Kondo, Holzforschung, 27, 93 (1973).
9. Y. Naya, G.D. Prestwich, and S.G. Spanton, Tetrabedron Lett., 23, 3047 (1982).
10. V.U. Ahmad, T.A. Farooqui, and K. Fizza, J. Nat. Prod., 55, 730 (1992).
11. R.P.W. Kesselmans, J.B.P.A. Wijnberg, A.J. Minnaard, R.E. Walinga, and A. de Groot, J. Org. Chem., 56, 7237 (1991).
12. M. Sumimoto, H. Ito, H. Hirai, and K. Wada, Chem. Ind., 780 (1963).

Received 24 September 1993

[^0]: ${ }^{1}$ For part 3, see Ando et al. (1).

